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LETTER TO THE EDITOR

Twist deformation of the rank-one Lie superalgebra
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‡ Institute for Scientific Interchange Foundation, Villa Gualino, 10133 Torino, Italy

Received 5 December 1997

Abstract. The Drinfeld twist is applied to deform the rank-one orthosymplectic Lie
superalgebraosp(1|2). The twist element is the same as for thesl(2) Lie algebra due to
the embedding of thesl(2) into the superalgebraosp(1|2). TheR-matrix has the direct sum
structure in the irreducible representations ofosp(1|2). The dual quantum group is defined
using the FRT-formalism. It includes the Jordanian quantum groupSLξ (2) as subalgebra and
Grassmann generators as well.

1. The deformed algebraospξ(1|2)

It is difficult to overestimate the role of the rank-one Lie algebrasl(2) in the theory of
Lie groups and their applications. The corresponding role for Lie superalgebras is played
by the orthosymplectic superalgebraosp(1|2) with five generators{h,X−, X+, v−, v+} and
commutation relations (Lie super- orZ2 graded-brackets):

[h,X±] = ±2X± [X+, X−] = h (1)

[h, v±] = ±v± [v+, v−]+ = −h/4 (2)

[X±, v±] = 0 [X±, v∓] = v± [v±, v±]+ = ±X±/2. (3)

The generatorsh andX± are even (zero parity,p = 0), while v± are odd,p = 1. As a
Hopf superalgebra, the universal envelopingU

(
osp(1|2)) of osp(1|2) is generated, assl(2),

just by three elements: it is sufficient to start from{h, v−, v+} restricted by the relations (2)
only, and defineX± ≡ ±4v2

±.
The quantum deformation ofsl(2) can be considered as a ‘pivot’ of the quantum group

theory [1, 2], while the corresponding quantum superalgebraospq(1|2) constructed in [3–5],
is the corresponding analogue for the quantum supergroups. As a quasitriangular Hopf
superalgebraospq(1|2), analogously to the universal enveloping ofosp(1|2), is generated
by three elements{h, v−, v+} under the relations

[h, v±] = ±v± [v+, v−] = − 1
4(q

h − q−h)/(q − q−1).

It is worth noting that, whilesl(2) is embedded intoosp(1|2), such embedding does not exist
for slq(2) into ospq(1|2) because the coproduct of even elementsX± ∼ v2

± also includes
odd ones.

The aim of this paper is to construct and study the twist deformation [6] ofosp(1|2)
that looks, in some sense, more natural thanospq(1|2) because it is consistent with this
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fundamental property of inclusionsl(2) ⊂ osp(1|2) and it is generated by the same twist
element ofsl(2).

The triangular Hopf algebraslξ (2) (cf [7–12] and references therein) is given by the
extension of the twist deformation of the universal enveloping of the Borel subalgebra
B− ≡ {h,X−} to the wholeU(sl(2)). The twist elementF is

F = 1+ ξh⊗X− + ξ
2

2
h(h+ 2)⊗X2

− + · · ·
that can be written as

F = (1− 2ξ1⊗X−)− 1
2 (h⊗1) = exp( 1

2h⊗ σ) (4)

whereσ = − ln(1− 2ξX−).
Let us recall from [6] that for a quasitriangular Hopf algebraA with an R-matrix R

the twisted Hopf algebraAt hasR-matrixR(F) given by the twist transformation

R(F) = F21RF−1 (5)

of the originalR-matrixR, whereF21 = PFP, andP is the permutation map inA⊗A.
The algebraic sector ofAt is not changed and the new coproduct is1t = F1F−1. The
twist element satisfies the relations inA⊗A [6]

(ε ⊗ id)F = (id⊗ ε)F = 1

and inA⊗A⊗A
F12(1⊗ id)F = F23(id⊗1)F .

According to this Drinfeld definition, the algebraic relations of equations (1) for the
twisted sl(2) are still the same, while the twisted coproduct1t ≡ F1F−1 is now on the
generators

1t(h) = h⊗ eσ + 1⊗ h
1t(X−) = X− ⊗ 1+ 1⊗X− − 2ξX− ⊗X− = X− ⊗ e−σ + 1⊗X−
1t(X+) = X+ ⊗ eσ + 1⊗X+ − ξh⊗ eσ h+ ξ

2
h(h− 2)⊗ eσ (1− eσ ).

Let us stress that this twist of the wholesl(2) is obtained due to the embeddingB− ⊂ sl(2).
Thus, knowing thatB− ⊂ sl(2) ⊂ osp(1|2), the procedure can be simply iterated to find

ospξ (1|2) (as well as the twisted deformations of all other nontrivial embeddings ofB−).
It is an easy exercise, keeping in mind the expression ofF (equation (4)), commutation
relations (2) and (3), and the primitive coproduct ofosp(1|2), to obtain:

1t(h) = h⊗ eσ + 1⊗ h
1t(v−) = v− ⊗ e−σ/2+ 1⊗ v−
1t(v+) = v+ ⊗ eσ/2+ 1⊗ v+ + ξh⊗ v−eσ .

(6)

One can reproduce the coproducts ofX± by squaring the coproducts ofv±, taking into
account theZ2-grading of the tensor product:

(x ⊗ y)(u⊗ w) = (−1)p(u)p(y)(xu⊗ yw)
and the commutation relations (2) and (3).

The maps of co-unitε and antipodeS, necessary for a Hopf superalgebra definition, are

ε(h) = ε(v±) = 0 ε(1) = 1

S(h) = −he−σ S(v−) = −v−eσ/2 S(v+) = −(v+ − ξhv−)e−σ/2.
(7)
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We can thus arrive at the following.

Definition. The Hopf superalgebra generated by three elements{h, v−, v+} satisfying the
relations (2), (6) and (7) is said to be the twist deformation ofU(osp(1|2)) or ospξ (1|2).

This is a triangular Hopf superalgebra(R21R = 1) with universalR-matrix

R = exp( 1
2σ ⊗ h) exp(− 1

2h⊗ σ). (8)

The irreducible finite-dimensional representations ofospξ (1|2)
ρs : ospξ (1|2) −→ End(Ws)

are the same as forosp(1|2), due to the unchanged algebraic relations (2). They are
parametrized by the half-integer spins = 0, 1

2, 1, . . ., have dimension 4s + 1, and are
decomposed into a direct sum of two irreps of thesl(2) [13]: Ws = Vs + Vs− 1

2
. Hence, the

R-matrix in the irreps ofospξ (1|2) is a direct sum of fourR-matrices ofslξ (2). For the
first non-trivial cases = 1

2 one obtains

R = (ρ 1
2
⊗ ρ 1

2
)R = R(ξ)+ I2+ I2+ 1 (9)

whereI2 are 2× 2 unit matrices, andR(ξ) is the Jordanian solution to the Yang–Baxter
equation (cf [7])

R(ξ) =


1 0 0 0
−ξ 1 0 0
ξ 0 1 0
ξ2 −ξ ξ 1

 . (10)

The twist parameter can be scaled:ξ → exp(2u)ξ by the similarity transformation with the
element exp(−uh).

The basis of the irreps tensor product decomposition will include deformed Clebsch–
Gordan coefficients, expressed as linear combinations of the usual ones and the matrix
elements of the twistF [14]. This is reflected in the spectral decomposition of theR-
matrix itself in the tensor productWs ⊗Wl

R̂s,l = F s,l
( s+l∑
j=|s−l|

(±)P j
)
(F s,l)−1

whereP j are projectors onto irreducible representations ofosp(1|2).

2. Quantum supergroupOSpξ(1|2)

The self-dual character of the twisted Borel subalgebra(B−)ξ was pointed out in [8]. This
is obvious in terms of the generators{h, σ } ∈ (B−)ξ and the generators{s, p} ∈ (B−)′ξ of
the dual, with the only non-trivial evaluations〈h, s〉 = 2, 〈σ, p〉 = 2 [8, 9]:

[h, σ ] = 2(1− eσ ) [p, s] = 2(1− es)

1(σ) = σ ⊗ 1+ 1⊗ σ 1(s) = s ⊗ 1+ 1⊗ s
1(h) = h⊗ eσ + 1⊗ h 1(p) = p ⊗ es + 1⊗ p
ε(h) = ε(σ ) = 0 ε(s) = ε(p) = 0

S(h) = −he−σ S(σ ) = −σ S(p) = −pe−s S(s) = −s.
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The situation is different for the twisted Hopf supersubalgebra(sB−)ξ . The latter is
generated by two elements{h, v−} as (B−)ξ . However, due to theZ2-grading its basis as
a linear space consists of evenσmhn and oddσmv−hn elements (σ = − ln(1+ 8ξv2

−)).

Proposition. The dual(sB−)′ξ of the twisted Hopf superalgebra(sB−)ξ is generated by
three elements{ν, η, x} satisfying the relations

[ν, η] = 0 [ν, x] = 1
2(1− e−2ν) [x, η] = 1

2η η2 = 0

1(ν) = ν ⊗ 1+ 1⊗ ν 1(η) = η ⊗ 1+ e−ν ⊗ η
1(x) = x ⊗ 1+ e−2ν ⊗ x + 1

8ξ
e−νη ⊗ η

ε(x) = ε(η) = ε(ν) = 0

S(η) = −ηeν S(ν) = −ν S(x) = −xe2ν .

(11)

One can check this by a straightforward calculation of evaluating the dual basisxkηδνl

of (sB−)′ξ andσmvδ−h
n of (sB−)ξ , k, l, m, n = 0, 1, 2, ...; δ = 0, 1 with the only non-zero

evaluations among the generators:〈h, ν〉 = 1, 〈v−, η〉 = 1, 〈σ, x〉 = 1. We shall prove it
below by a reduction from the quantum supergroupOSpξ (1|2). The universalT -matrix
(bicharacter) is given in term of these bases as a product of three exponents

T = exp(σ ⊗ x) exp(v− ⊗ η) exp(h⊗ ν).
It is interesting to point out that starting from a Hopf superalgebra without nilpotent elements
we were forced to introduce Grassmannian variables (η) in the dual superalgebra.

The dual of the twisted Hopf superalgebraospξ (1|2) can be introduced using aZ2-graded
version of the FRT-formalism [2], because theR-matrix in the fundamental representation
is known (9). TheT -matrix of generators of quantum supergroupOSpξ (1|2) in this
representation has dimension 3× 3. There are two convenient bases in this irrep asC3:
(i) with grading(0, 1, 0) where the odd generatorsv−, v+ of osp(1|2) are lower and upper
triangular, and (ii) with grading(0, 0, 1) where T can be written in block matrix form.
Respectively, these forms are

T =
(
a α b

γ g β

c δ d

)
T =

(
T ψ

ω g

)
(12)

whereT is 2×2 matrix of the even generators{a, b, c, d}, whileψ andω are two component
column(α, δ)t and row(γ, β) vectors of odd elements.

The 3× 3 matrix T of theOSpξ (1|2) generators satisfies the FRT-relation

RT1T2 = T2T1R (13)

with Z2-graded tensor product and 9× 9 R-matrix R (9). From the block-diagonal form of
R (9) it follows for 2× 2 matrix T

R(ξ)T1T2 = T2T1R(ξ). (14)

Hence, one reproduces the algebraic sector (commutation relations) of the twisted quantum
groupSLξ (2) for the generators{a, b, c, d} [7]. For the other blocks of different dimension
we obtain from (13)

R(ξ)T1ψ2 = ψ2T1 gT = Tg (15)

ω1T2 = T2ω1R(ξ) ω1ψ2 = −ψ2ω1 (16)

ω1ω2 = −ω2ω1R(ξ) R(ξ)ψ1ψ2 = −ψ2ψ1. (17)
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From the relations (14)–(17) one obtains centrality of the following elements:

detξ T = a(d − ξb)− cb g θ = ωT −1ψ.

The coproduct, co-unit and antipode are given by the standard expressions of the FRT-
formalism [2]

1(T) = T⊗ T ε(T) = I3 S(T) = T−1. (18)

The inverse ofT is expressed in terms of the generators (12) provided we have invertability
of detξ T , and(g − ωT −1ψ)

T−1 =
(
I2 −T −1ψ

0 1

)(
T −1 0

0 (g − θ)−1

)(
I2 0

−ωT −1 1

)
. (19)

Thus we arrive at the following definition.

Definition. The dual to the Hopf superalgebraospξ (1|2) generated by the entries ofT (12)
subject to the relations (14)–(18) is said to be the quantum supergroupOSpξ (1|2).

Another way to define thisOSpξ (1|2) is to use the twist elementF as the
pseudodifferential operator on the Lie supergroupOSp(1|2), and redefine super-
commutative product of functions on this supergroup.

The reduction or Hopf superalgebra homomorphism, ofOSpξ (1|2) to (sB−)′ξ is given
by

b = α = β = 0 g = 1 a = d−1 = exp(ν) γ a−1 = δ = 1
2η c = 2ξxa.

3. Conclusion

The rank-one orthosymplectic superalgebra has been deformed by the twist element
F ∈ U(sl(2))⊗2 obtained from the embedded Lie algebrasl(2). Although the deformed
Lie superalgebra is finite dimensional it can be used for further deformation of infinite-
dimensional Hopf superalgebras (e.g. super-Yangians) and integrable models [14]. There
are also possibilities for different contractions. Work in this direction is in progress.

The authors are grateful to R Kashaev and M Rasetti for useful discussions. We appreciate
the hospitality of the Institute for Scientific Interchange Foundation. This research was
supported by the INTAS contract 94-1454 and by the RFFI grant 96-01-00851.
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