Twist deformation of the rank-one Lie superalgebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 L79
(http://iopscience.iop.org/0305-4470/31/4/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:13

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Twist deformation of the rank-one Lie superalgebra

E Celeghini \dagger and P P Kulish \ddagger
\dagger Dipartimento di Fisica del’Università and INFN, Firenze, L.go Fermi 2-I50125 Firenze, Italy
\ddagger Institute for Scientific Interchange Foundation, Villa Gualino, 10133 Torino, Italy

Received 5 December 1997

Abstract

The Drinfeld twist is applied to deform the rank-one orthosymplectic Lie superalgebra $\operatorname{osp}(1 \mid 2)$. The twist element is the same as for the $\operatorname{sl}(2)$ Lie algebra due to the embedding of the $\operatorname{sl}(2)$ into the superalgebra $\operatorname{osp}(1 \mid 2)$. The R-matrix has the direct sum structure in the irreducible representations of $\operatorname{osp}(1 \mid 2)$. The dual quantum group is defined using the FRT-formalism. It includes the Jordanian quantum group $S L_{\xi}(2)$ as subalgebra and Grassmann generators as well.

1. The deformed algebra osp $_{\xi}(\mathbf{1} \mid \mathbf{2})$

It is difficult to overestimate the role of the rank-one Lie algebra $s l(2)$ in the theory of Lie groups and their applications. The corresponding role for Lie superalgebras is played by the orthosymplectic superalgebra $\operatorname{osp}(1 \mid 2)$ with five generators $\left\{h, X_{-}, X_{+}, v_{-}, v_{+}\right\}$and commutation relations (Lie super- or \mathbb{Z}_{2} graded-brackets):

$$
\begin{array}{lc}
{\left[h, X_{ \pm}\right]= \pm 2 X_{ \pm}} & {\left[X_{+}, X_{-}\right]=h} \\
{\left[h, v_{ \pm}\right]= \pm v_{ \pm}} & {\left[v_{+}, v_{-}\right]_{+}=-h / 4} \\
{\left[X_{ \pm}, v_{ \pm}\right]=0} & {\left[X_{ \pm}, v_{\mp}\right]=v_{ \pm}} \tag{3}
\end{array}\left[v_{ \pm}, v_{ \pm}\right]_{+}= \pm X_{ \pm} / 2 .
$$

The generators h and $X_{ \pm}$are even (zero parity, $p=0$), while $v_{ \pm}$are odd, $p=1$. As a Hopf superalgebra, the universal enveloping $\mathcal{U}(\operatorname{osp}(1 \mid 2))$ of $\operatorname{osp}(1 \mid 2)$ is generated, as $\operatorname{sl}(2)$, just by three elements: it is sufficient to start from $\left\{h, v_{-}, v_{+}\right\}$restricted by the relations (2) only, and define $X_{ \pm} \equiv \pm 4 v_{ \pm}^{2}$.

The quantum deformation of $s l(2)$ can be considered as a 'pivot' of the quantum group theory [1, 2], while the corresponding quantum superalgebra $\operatorname{osp}_{q}(1 \mid 2)$ constructed in [3-5], is the corresponding analogue for the quantum supergroups. As a quasitriangular Hopf superalgebra $\operatorname{osp}_{q}(1 \mid 2)$, analogously to the universal enveloping of $\operatorname{osp}(1 \mid 2)$, is generated by three elements $\left\{h, v_{-}, v_{+}\right\}$under the relations

$$
\left[h, v_{ \pm}\right]= \pm v_{ \pm} \quad\left[v_{+}, v_{-}\right]=-\frac{1}{4}\left(q^{h}-q^{-h}\right) /\left(q-q^{-1}\right)
$$

It is worth noting that, while $\operatorname{sl}(2)$ is embedded into $\operatorname{osp}(1 \mid 2)$, such embedding does not exist for $s l_{q}(2)$ into $\operatorname{osp}_{q}(1 \mid 2)$ because the coproduct of even elements $X_{ \pm} \sim v_{ \pm}^{2}$ also includes odd ones.

The aim of this paper is to construct and study the twist deformation [6] of $\operatorname{osp}(1 \mid 2)$ that looks, in some sense, more natural than $\operatorname{osp}_{q}(1 \mid 2)$ because it is consistent with this
§ On leave of absence from the St Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, St Petersburg, 191011, Russia. E-mail address: kulish@pdmi.ras.ru
fundamental property of inclusion $\operatorname{sl}(2) \subset \operatorname{osp}(1 \mid 2)$ and it is generated by the same twist element of $\operatorname{sl}(2)$.

The triangular Hopf algebra $s l_{\xi}(2)$ (cf [7-12] and references therein) is given by the extension of the twist deformation of the universal enveloping of the Borel subalgebra $B_{-} \equiv\left\{h, X_{-}\right\}$to the whole $\mathcal{U}(s l(2))$. The twist element \mathcal{F} is

$$
\mathcal{F}=1+\xi h \otimes X_{-}+\frac{\xi^{2}}{2} h(h+2) \otimes X_{-}^{2}+\cdots
$$

that can be written as

$$
\begin{equation*}
\mathcal{F}=\left(1-2 \xi 1 \otimes X_{-}\right)^{-\frac{1}{2}(h \otimes 1)}=\exp \left(\frac{1}{2} h \otimes \sigma\right) \tag{4}
\end{equation*}
$$

where $\sigma=-\ln \left(1-2 \xi X_{-}\right)$.
Let us recall from [6] that for a quasitriangular Hopf algebra \mathcal{A} with an R-matrix \mathcal{R} the twisted Hopf algebra \mathcal{A}_{t} has R-matrix $\mathcal{R}^{(\mathcal{F})}$ given by the twist transformation

$$
\begin{equation*}
\mathcal{R}^{(\mathcal{F})}=\mathcal{F}_{21} \mathcal{R} \mathcal{F}^{-1} \tag{5}
\end{equation*}
$$

of the original R-matrix \mathcal{R}, where $\mathcal{F}_{21}=\mathcal{P \mathcal { F } \mathcal { P }}$, and \mathcal{P} is the permutation map in $\mathcal{A} \otimes \mathcal{A}$. The algebraic sector of \mathcal{A}_{t} is not changed and the new coproduct is $\Delta_{t}=\mathcal{F} \Delta \mathcal{F}^{-1}$. The twist element satisfies the relations in $\mathcal{A} \otimes \mathcal{A}$ [6]

$$
(\epsilon \otimes \mathrm{id}) \mathcal{F}=(\mathrm{id} \otimes \epsilon) \mathcal{F}=1
$$

and in $\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$

$$
\mathcal{F}_{12}(\Delta \otimes \mathrm{id}) \mathcal{F}=\mathcal{F}_{23}(\mathrm{id} \otimes \Delta) \mathcal{F}
$$

According to this Drinfeld definition, the algebraic relations of equations (1) for the twisted $\operatorname{sl}(2)$ are still the same, while the twisted coproduct $\Delta_{t} \equiv \mathcal{F} \Delta \mathcal{F}^{-1}$ is now on the generators

$$
\begin{aligned}
& \Delta_{t}(h)=h \otimes \mathrm{e}^{\sigma}+1 \otimes h \\
& \Delta_{t}\left(X_{-}\right)=X_{-} \otimes 1+1 \otimes X_{-}-2 \xi X_{-} \otimes X_{-}=X_{-} \otimes \mathrm{e}^{-\sigma}+1 \otimes X_{-} \\
& \Delta_{t}\left(X_{+}\right)=X_{+} \otimes \mathrm{e}^{\sigma}+1 \otimes X_{+}-\xi h \otimes \mathrm{e}^{\sigma} h+\frac{\xi}{2} h(h-2) \otimes \mathrm{e}^{\sigma}\left(1-\mathrm{e}^{\sigma}\right)
\end{aligned}
$$

Let us stress that this twist of the whole $s l(2)$ is obtained due to the embedding $B_{-} \subset \operatorname{sl}(2)$.
Thus, knowing that $B_{-} \subset \operatorname{sl}(2) \subset \operatorname{osp}(1 \mid 2)$, the procedure can be simply iterated to find $\operatorname{osp}_{\xi}(1 \mid 2)$ (as well as the twisted deformations of all other nontrivial embeddings of B_{-}). It is an easy exercise, keeping in mind the expression of \mathcal{F} (equation (4)), commutation relations (2) and (3), and the primitive coproduct of $\operatorname{osp}(1 \mid 2)$, to obtain:

$$
\begin{align*}
& \Delta_{t}(h)=h \otimes \mathrm{e}^{\sigma}+1 \otimes h \\
& \Delta_{t}\left(v_{-}\right)=v_{-} \otimes \mathrm{e}^{-\sigma / 2}+1 \otimes v_{-} \tag{6}\\
& \Delta_{t}\left(v_{+}\right)=v_{+} \otimes \mathrm{e}^{\sigma / 2}+1 \otimes v_{+}+\xi h \otimes v_{-} \mathrm{e}^{\sigma} .
\end{align*}
$$

One can reproduce the coproducts of $X_{ \pm}$by squaring the coproducts of $v_{ \pm}$, taking into account the Z_{2}-grading of the tensor product:

$$
(x \otimes y)(u \otimes w)=(-1)^{p(u) p(y)}(x u \otimes y w)
$$

and the commutation relations (2) and (3).
The maps of co-unit ϵ and antipode S, necessary for a Hopf superalgebra definition, are

$$
\begin{array}{lll}
\epsilon(h)=\epsilon\left(v_{ \pm}\right)=0 & \epsilon(1)=1 & \\
S(h)=-h \mathrm{e}^{-\sigma} & S\left(v_{-}\right)=-v_{-} \mathrm{e}^{\sigma / 2} & S\left(v_{+}\right)=-\left(v_{+}-\xi h v_{-}\right) \mathrm{e}^{-\sigma / 2} \tag{7}
\end{array}
$$

We can thus arrive at the following.
Definition. The Hopf superalgebra generated by three elements $\left\{h, v_{-}, v_{+}\right\}$satisfying the relations (2), (6) and (7) is said to be the twist deformation of $\mathcal{U}(\operatorname{osp}(1 \mid 2))$ or $\operatorname{osp}_{\xi}(1 \mid 2)$.

This is a triangular Hopf superalgebra $\left(\mathcal{R}_{21} \mathcal{R}=1\right)$ with universal R-matrix

$$
\begin{equation*}
\mathcal{R}=\exp \left(\frac{1}{2} \sigma \otimes h\right) \exp \left(-\frac{1}{2} h \otimes \sigma\right) \tag{8}
\end{equation*}
$$

The irreducible finite-dimensional representations of $\operatorname{osp}_{\xi}(1 \mid 2)$

$$
\rho_{s}: \operatorname{osp}_{\xi}(1 \mid 2) \longrightarrow \operatorname{End}\left(W_{s}\right)
$$

are the same as for $\operatorname{osp}(1 \mid 2)$, due to the unchanged algebraic relations (2). They are parametrized by the half-integer $\operatorname{spin} s=0, \frac{1}{2}, 1, \ldots$, have dimension $4 s+1$, and are decomposed into a direct sum of two irreps of the $s l(2)$ [13]: $W_{s}=V_{s}+V_{s-\frac{1}{2}}$. Hence, the R-matrix in the irreps of $\operatorname{osp}_{\xi}(1 \mid 2)$ is a direct sum of four R-matrices of $s l_{\xi}^{2}(2)$. For the first non-trivial case $s=\frac{1}{2}$ one obtains

$$
\begin{equation*}
\mathbf{R}=\left(\rho_{\frac{1}{2}} \otimes \rho_{\frac{1}{2}}\right) \mathcal{R}=R(\xi)+I_{2}+I_{2}+1 \tag{9}
\end{equation*}
$$

where I_{2} are 2×2 unit matrices, and $R(\xi)$ is the Jordanian solution to the Yang-Baxter equation (cf [7])

$$
R(\xi)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{10}\\
-\xi & 1 & 0 & 0 \\
\xi & 0 & 1 & 0 \\
\xi^{2} & -\xi & \xi & 1
\end{array}\right)
$$

The twist parameter can be scaled: $\xi \rightarrow \exp (2 u) \xi$ by the similarity transformation with the element $\exp (-u h)$.

The basis of the irreps tensor product decomposition will include deformed ClebschGordan coefficients, expressed as linear combinations of the usual ones and the matrix elements of the twist \mathcal{F} [14]. This is reflected in the spectral decomposition of the R matrix itself in the tensor product $W_{s} \otimes W_{l}$

$$
\hat{R}^{s, l}=F^{s, l}\left(\sum_{j=|s-l|}^{s+l}(\pm) P^{j}\right)\left(F^{s, l}\right)^{-1}
$$

where P^{j} are projectors onto irreducible representations of $\operatorname{osp}(1 \mid 2)$.

2. Quantum supergroup $O S p_{\xi}(1 \mid 2)$

The self-dual character of the twisted Borel subalgebra $\left(B_{-}\right)_{\xi}$ was pointed out in [8]. This is obvious in terms of the generators $\{h, \sigma\} \in\left(B_{-}\right)_{\xi}$ and the generators $\{s, p\} \in\left(B_{-}\right)_{\xi}^{\prime}$ of the dual, with the only non-trivial evaluations $\langle h, s\rangle=2,\langle\sigma, p\rangle=2$ [8, 9]:

$$
\begin{aligned}
& {[h, \sigma]=2\left(1-e^{\sigma}\right) \quad[p, s]=2\left(1-\mathrm{e}^{s}\right)} \\
& \Delta(\sigma)=\sigma \otimes 1+1 \otimes \sigma \quad \Delta(s)=s \otimes 1+1 \otimes s \\
& \Delta(h)=h \otimes \mathrm{e}^{\sigma}+1 \otimes h \quad \Delta(p)=p \otimes \mathrm{e}^{s}+1 \otimes p \\
& \epsilon(h)=\epsilon(\sigma)=0 \quad \epsilon(s)=\epsilon(p)=0 \\
& S(h)=-h \mathrm{e}^{-\sigma} \quad S(\sigma)=-\sigma \quad S(p)=-p \mathrm{e}^{-s} \quad S(s)=-s
\end{aligned}
$$

The situation is different for the twisted Hopf supersubalgebra $\left(s B_{-}\right)_{\xi}$. The latter is generated by two elements $\left\{h, v_{-}\right\}$as $\left(B_{-}\right)_{\xi}$. However, due to the Z_{2}-grading its basis as a linear space consists of even $\sigma^{m} h^{n}$ and odd $\sigma^{m} v_{-} h^{n}$ elements $\left(\sigma=-\ln \left(1+8 \xi v_{-}^{2}\right)\right)$.

Proposition. The dual $\left(s B_{-}\right)_{\xi}^{\prime}$ of the twisted Hopf superalgebra $\left(s B_{-}\right)_{\xi}$ is generated by three elements $\{v, \eta, x\}$ satisfying the relations

$$
\begin{align*}
& {[v, \eta]=0 \quad[v, x]=\frac{1}{2}\left(1-\mathrm{e}^{-2 v}\right) \quad[x, \eta]=\frac{1}{2} \eta \quad \eta^{2}=0} \\
& \Delta(v)=v \otimes 1+1 \otimes v \quad \Delta(\eta)=\eta \otimes 1+\mathrm{e}^{-v} \otimes \eta \\
& \Delta(x)=x \otimes 1+\mathrm{e}^{-2 v} \otimes x+\frac{1}{8 \xi} \mathrm{e}^{-v} \eta \otimes \eta \tag{11}\\
& \epsilon(x)=\epsilon(\eta)=\epsilon(v)=0 \\
& S(\eta)=-\eta \mathrm{e}^{v} \quad S(v)=-v \quad S(x)=-x \mathrm{e}^{2 v}
\end{align*}
$$

One can check this by a straightforward calculation of evaluating the dual basis $x^{k} \eta^{\delta} v^{l}$ of $\left(s B_{-}\right)_{\xi}^{\prime}$ and $\sigma^{m} v_{-}^{\delta} h^{n}$ of $\left(s B_{-}\right)_{\xi}, k, l, m, n=0,1,2, \ldots ; \delta=0,1$ with the only non-zero evaluations among the generators: $\langle h, v\rangle=1,\left\langle v_{-}, \eta\right\rangle=1,\langle\sigma, x\rangle=1$. We shall prove it below by a reduction from the quantum supergroup $O S p_{\xi}(1 \mid 2)$. The universal T-matrix (bicharacter) is given in term of these bases as a product of three exponents

$$
\mathcal{T}=\exp (\sigma \otimes x) \exp \left(v_{-} \otimes \eta\right) \exp (h \otimes v)
$$

It is interesting to point out that starting from a Hopf superalgebra without nilpotent elements we were forced to introduce Grassmannian variables (η) in the dual superalgebra.

The dual of the twisted Hopf superalgebra $\operatorname{osp}_{\xi}(1 \mid 2)$ can be introduced using a Z_{2}-graded version of the FRT-formalism [2], because the R-matrix in the fundamental representation is known (9). The T-matrix of generators of quantum supergroup $\operatorname{OSp}_{\xi}(1 \mid 2)$ in this representation has dimension 3×3. There are two convenient bases in this irrep as C^{3} : (i) with grading $(0,1,0)$ where the odd generators v_{-}, v_{+}of $\operatorname{osp}(1 \mid 2)$ are lower and upper triangular, and (ii) with grading $(0,0,1)$ where \mathbf{T} can be written in block matrix form. Respectively, these forms are

$$
\mathbf{T}=\left(\begin{array}{lll}
a & \alpha & b \tag{12}\\
\gamma & g & \beta \\
c & \delta & d
\end{array}\right) \quad \mathbf{T}=\left(\begin{array}{ll}
T & \psi \\
\omega & g
\end{array}\right)
$$

where \mathbf{T} is 2×2 matrix of the even generators $\{a, b, c, d\}$, while ψ and ω are two component column $(\alpha, \delta)^{t}$ and row (γ, β) vectors of odd elements.

The 3×3 matrix \mathbf{T} of the $\operatorname{OSp}_{\xi}(1 \mid 2)$ generators satisfies the FRT-relation

$$
\begin{equation*}
\mathbf{R} \mathbf{T}_{1} \mathbf{T}_{2}=\mathbf{T}_{2} \mathbf{T}_{1} \mathbf{R} \tag{13}
\end{equation*}
$$

with \mathbb{Z}_{2}-graded tensor product and $9 \times 9 R$-matrix \mathbf{R} (9). From the block-diagonal form of \mathbf{R} (9) it follows for 2×2 matrix T

$$
\begin{equation*}
R(\xi) T_{1} T_{2}=T_{2} T_{1} R(\xi) \tag{14}
\end{equation*}
$$

Hence, one reproduces the algebraic sector (commutation relations) of the twisted quantum group $S L_{\xi}(2)$ for the generators $\{a, b, c, d\}$ [7]. For the other blocks of different dimension we obtain from (13)

$$
\begin{array}{lc}
R(\xi) T_{1} \psi_{2}=\psi_{2} T_{1} & g \mathbf{T}=\mathbf{T} g \\
\omega_{1} T_{2}=T_{2} \omega_{1} R(\xi) & \omega_{1} \psi_{2}=-\psi_{2} \omega_{1} \\
\omega_{1} \omega_{2}=-\omega_{2} \omega_{1} R(\xi) & R(\xi) \psi_{1} \psi_{2}=-\psi_{2} \psi_{1} \tag{17}
\end{array}
$$

From the relations (14)-(17) one obtains centrality of the following elements:

$$
\operatorname{det}_{\xi} T=a(d-\xi b)-c b \quad g \quad \theta=\omega T^{-1} \psi
$$

The coproduct, co-unit and antipode are given by the standard expressions of the FRTformalism [2]

$$
\begin{equation*}
\Delta(\mathbf{T})=\mathbf{T} \otimes \mathbf{T} \quad \epsilon(\mathbf{T})=I_{3} \quad S(\mathbf{T})=\mathbf{T}^{-1} \tag{18}
\end{equation*}
$$

The inverse of \mathbf{T} is expressed in terms of the generators (12) provided we have invertability of $\operatorname{det}_{\xi} T$, and $\left(g-\omega T^{-1} \psi\right)$

$$
\mathbf{T}^{-1}=\left(\begin{array}{cc}
I_{2} & -T^{-1} \psi \tag{19}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
0 & (g-\theta)^{-1}
\end{array}\right)\left(\begin{array}{cc}
I_{2} & 0 \\
-\omega T^{-1} & 1
\end{array}\right)
$$

Thus we arrive at the following definition.
Definition. The dual to the Hopf superalgebra $\operatorname{osp}_{\xi}(1 \mid 2)$ generated by the entries of \mathbf{T} (12) subject to the relations (14)-(18) is said to be the quantum supergroup $O S p_{\xi}(1 \mid 2)$.

Another way to define this $O \operatorname{Sp}_{\xi}(1 \mid 2)$ is to use the twist element \mathcal{F} as the pseudodifferential operator on the Lie supergroup $O S p(1 \mid 2)$, and redefine supercommutative product of functions on this supergroup.

The reduction or Hopf superalgebra homomorphism, of $O S p_{\xi}(1 \mid 2)$ to $\left(s B_{-}\right)_{\xi}^{\prime}$ is given by
$b=\alpha=\beta=0 \quad g=1 \quad a=d^{-1}=\exp (v) \quad \gamma a^{-1}=\delta=\frac{1}{2} \eta \quad c=2 \xi x a$.

3. Conclusion

The rank-one orthosymplectic superalgebra has been deformed by the twist element $\mathcal{F} \in \mathcal{U}(s l(2))^{\otimes 2}$ obtained from the embedded Lie algebra $\operatorname{sl}(2)$. Although the deformed Lie superalgebra is finite dimensional it can be used for further deformation of infinitedimensional Hopf superalgebras (e.g. super-Yangians) and integrable models [14]. There are also possibilities for different contractions. Work in this direction is in progress.

The authors are grateful to R Kashaev and M Rasetti for useful discussions. We appreciate the hospitality of the Institute for Scientific Interchange Foundation. This research was supported by the INTAS contract 94-1454 and by the RFFI grant 96-01-00851.

References

[1] Drinfeld V G 1987 Proc. Int. Cong. of Mathematicians (ICM-1986, Berkeley, CA) vol 1, pp 798-820
[2] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Alg. Anal. 1 178-206 (in Russian) (Engl. transl. 1990 Leningrad Math. J. 1 193-225)
[3] Kulish P P 1988 Quantum superalgebra osp(2|1) Preprint RIMS-615, Kyoto
[4] Kulish P P and Reshetikhin N Yu 1989 Lett. Math. Phys. 18143
[5] Saleur H 1990 Nucl. Phys. B 336363
[6] Drinfeld V G 1990 Alg. Anal. 1 321-42 (in Russian) (Engl. transl. Leningrad Math. J. 1 1459)
[7] Zakrzewski S 1991 Lett. Math. Phys. 22287
[8] Ogievetsky O V 1992 Proc. Winter School Geometry and Physics (Zidkov, 1993) Suppl. Rendiconti cir. Math. Palermo p 185
[9] Vladimirov A 1993 Mod. Phys. Lett. A 82573
Vladimirov A 1994 Proc. Conf. 'Symmetry Methods in Physics' (Dubna, July 1993) Preprint hep-th/9401101
[10] Khoroshkin S, Stolin A and Tolstoy V 1996 From Field Theory to Quantum Groups (Singapore: World Scientific) pp 53-77
[11] Ballesteros A and Herranz F 1996 J. Phys. A: Math. Gen. 29 L316
[12] Aneva B L, Dobrev V K and Mihov S G 1997 J. Phys. A: Math. Gen. 29 6769-81
[13] Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18146
[14] Kulish P P and Stolin A A 1997 Czech. J. Phys. 47123
Kulish P P and Stolin A A 1997 Proc. 6th Coll. 'Quantum Groups and Integrable Systems' (Prague, June 1997) Preprint q -alg/9708024

